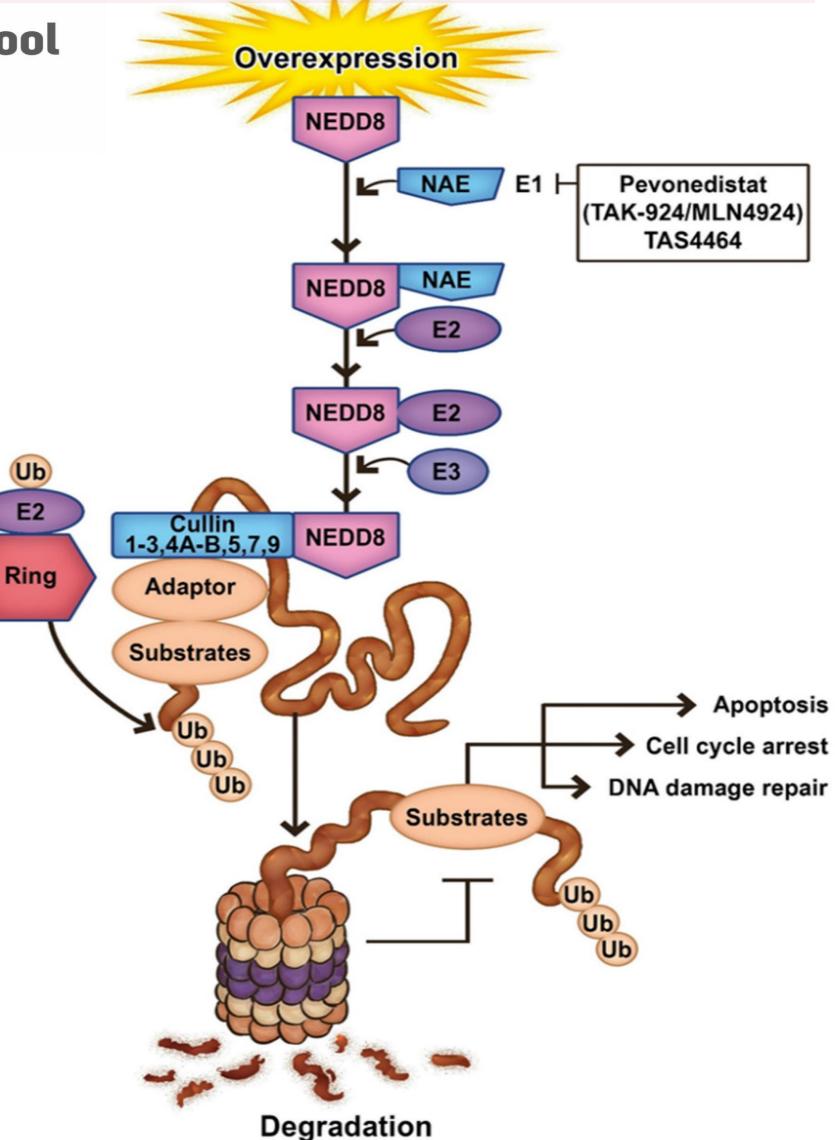
Prognostic value of expression of selected genes regulating the mitochondrial apoptosis pathway in patients with acute myeloid leukemia

Kinga Krawiec¹, Agnieszka Pluta¹ ¹ Department of Hematology, Medical University of Lodz kinga.krawiec@stud.umed.lodz.pl


International Doctoral School Medical University of Lodz

Introduction

- Genetic mutations and gene expression disorders are identified in >97% of patients with acute myeloid leukemia (AML), leading to unleashed proliferation and evasion of regulated cell death (**RCD**) [1].
- > The most prominent form of RCD is apoptosis which eliminates unnecessary cells in the \succ course of following cellular stress [2, 3].
- > During oncogenesis, an overexpression of antiapoptotic proteins - BCL-2 family proteins occur. They determine the survival and proliferation of abnormal haemopoietic cells [4].

The BCL-2 family consists of three subfamilies: pro-apoptotic BH3-only members BIM, BID, PUMA, NOXA, HRK, BMF and BAD, proapoptotic molecules BAX and BAK and anti-apoptotic BCL-2 family proteins BCL-2, BCL-X, BCL-W, MCL-1, A1, and BCL-B (Fig 1.). In response to an apoptotic stimulus the transcription of pro-apoptotic BH3-only members is upregulated, which bind antiapoptotic members of the BCL-2 family and inhibit their activity [5].

- > In AML apoptosis is dysregulated and there is increased expression of apoptosis suppressor proteins which stimulate oncogenesis.

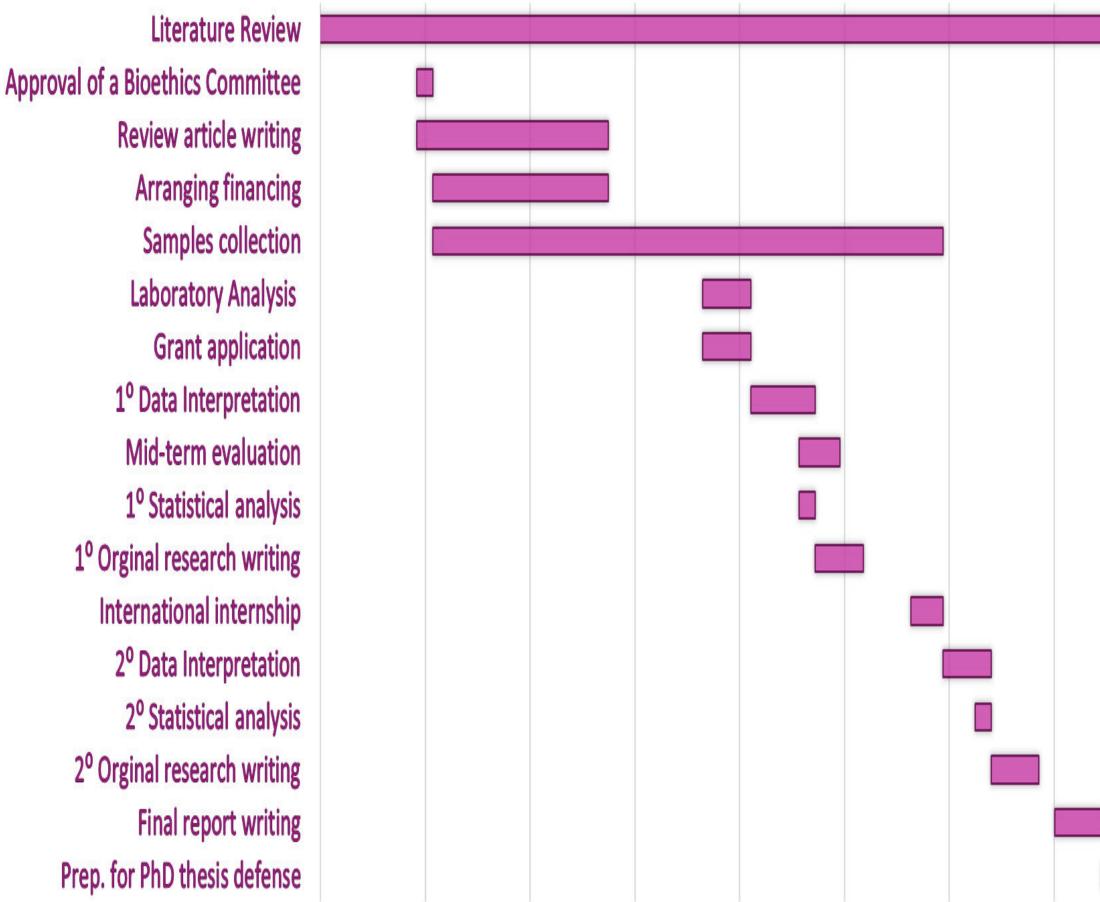
> Further research in the field of AML biology can contribute to identify **new prognostic markers and** finding new therapeutic targets.

Hypothesis & Objectives

✓ Study hypothesis

Abnormalities in the expression of genes related to the mitochondrial apoptosis pathway have an important role in the biology of AML and affect prognosis.

✓ Primary objective


Evaluation of the impact of disorders in the expression of selected genes regulating the mitochondrial apoptosis pathway: BIM, BID, BIK, PUMA, NOXA, BAD, BAX, BAK, BCL2, BCLX, MCL1, NEDD8, SMAC/DIABLO, CASP3 and CASP7, TP53, CULLIN family: CUL-1-3, 4A-B, 5, 7, 9 on the prognosis of AML patients.

✓ Secondary objectives

- 1. Evaluation of differences in overall survival (OS) and disease-free survival (DFS) between patients with low and high expression of the respective apoptosis genes.
- 2. Evaluation of the usefulness of apoptosis gene expression determination as new prognostic marker in AML, which may optimise therapeutic management.
- 3. Correlation of apoptosis gene expression with previously recognized prognostic factors.
- 4. An attempt to select a group of patients who could **potentially benefit from apoptosis**based drugs.

Research project framework

mar.2021 wrz.2021 kwi.2022 paź.2022 lis.2023 maj.2023 cze.2024 gru.2024

Schematic representation of the main steps of the neddylation pathway. (Krawiec K., Strzałka P., Czemerska M., et al. Targeting Apoptosis in AML: Where Do We Stand? Cancers. 2022; 14(20):4995)

Material and methods

Collection of the research population

✤ A prospective, single-centre study. The analysis includes patients hospitalized in the Department of Haematology, Lodz.

Inclusion criteria	Exclusion criteria
1. Newly diagnosed AML according to WHO 2016.	1. Pregnancy
2. Age between 18-85 years old.	2. Acute promyelocytic leukemia
3. Providing voluntary, informed consent.	3. Other active malignancy.

Currently (as of April 2023), 60 patients are included in the study, including 40 patients who underwent intensive treatment for AML at a later stage.

2) Laboratory tests

- The testing sample is an aspirate of approx. 10 ml bone marrow.
- ✤ I have currently isolated and banked mononuclear cells from 60 patients.
- The study will be conducted in two tranches.
- ✤ I started the analysis of the first tranche of material on 03.2023. I included material collected from 40 patients who have undergone intensive treatment for AML.
- The rest of the material remains banked until further laboratory tests are made. ✤ Based on statistical analysis, I selected the reference genes MRPL19 and PPIA. The genes I chose to analyze are BIM, BID, BIK, PUMA, NOXA, BAD, BAX, BAK, BCL2, BCLX, MCL1, NEDD8, SMAC/DIABLO, CASP3, 7, TP53, CUL-1-5, 7, 9. The isolation of genetic material in the form of total RNA was performed in 03.2023. The material is currently subjected to molecular analysis, using reverse-transcription polymerase chain reaction (RT-PCR). ✤ In further analysis, the variation in gene expression levels will be compared with reference genes.

References: 1. Grove CS, Vassiliou GS. Acute myeloid leukaemia: a paradigm for the clonal evolution of cancer? Dis Model Mech. 2014;7(8):941-51. 2. Patel JP, Gönen M, Figueroa ME, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366(12):1079-89. 3. Testa U, Riccioni R. Deregulation of apoptosis in acute myeloid leukemia. Haematologica 2007;92(1):81-94.4. Fernald K, Kurokawa M. Evading apoptosis in cancer. Trends Cell Biol. 2013;23(12):620-33. 5. Nagata S. Apoptosis and Clearance of Apoptotic Cells. Annu Rev Immunol. 2018;36:489-517.

3) Analysis of collected data

- Laboratory analysis of the first tranche of material will be conducted until 06.2023, after that, I will carry out statistical analysis of the obtained results and start work on the first original paper in the field of my research.
- The prognosis evaluation will focus on the assessment of response to treatment. ✤ We will analyse the significance of the expression of selected apoptosis genes as potential prognostic factors and correlate the results with parameters such as cytogenetic-molecular risk group assessment and tumour size markers.
- So far, I have published a review article as part of my doctoral thesis. (Krawiec K., Strzałka P., Czemerska M., et al. Targeting Apoptosis in AML: Where Do We Stand? Cancers. 2022; 14(20):4995. doi: 10.3390/cancers14204995, IF: 6,575.)