
Radiotherapy (RT) is known to lead to both immune stimulatory and

suppressive effects, the latter of which can cause such side effects as

radiation-induced lymphopenia (RIL). RIL can lead to a worse response to

cancer treatment and was therefore reported as a negative prognostic factor

in patients treated with RT for variety of tumors. This line of research is a

continuation of my work on prediction of RT side effects, but it is more

challenging than prediction of Radiation Induced Hypothyroidism (RIHT) that I

worked on during previous year. RIL, contrary to RIHT, is not associated with

any single anatomic region, so any commonly used state-of-art normal tissue

complication probability (NTCP) model, would not perform satisfactorily. In

consequence, my research must incorporate anatomic regions rich in immune

cells and identification of the most relevant ones for RIL prediction.

In order to extend the spectrum of information that can be obtained through

investigation of affected patients, I employ a method called radiomics. It aims

at deriving biomarkers from medical images, which are typically features

describing shape, intensity or texture of specific Region(s) of Interest (ROI),

typically organs at risk. The radiomic approach provides the ability to

efficiently mine features, which are imperceptible to the human eye, but may

provide crucial data about the patient’s condition.

One of the steps in the pipeline of data preparation before radiomic features

extraction, that could benefit the most from automatization, is the

segmentation of ROIs. Currently such segmentation is performed by doctors

and requires specialized knowledge to delineate each of the organs by hand.

Moreover, prediction of RIL may require analysis of regions that are typically

not segmented during RT planning, e.g. ribs or sternum, so manual delineation

would generate considerable workload for radiotherapist or radiologist.
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For development of a pipeline for automized segmentation and assessing its

reliability, I collected a preliminary set of CT images, together with matching

RT plans. The population for my study consisted of patients, who have

undergone radical RT for non-small cell lung cancer. After the preselection of

patients based on the inclusion criteria (age, tumor location, RT type) I

managed to collect image scans, with required modalities, for 30 of them, half

of them with RIL that developed during or after RT. All images and organ

segmentations were stored in DICOM format in CT and RTSTRUCT modalities.

In order to compare manual and automatic segmentation methods, I prepared

2 separate pipelines, beginning with the same CT scans. For performing

automatic segmentation, a tool, based on a machine learning model adapted

to CT images, called TotalSegmentator [1] was incorporated into the pipeline.

The first organ to be investigated was chosen to be a heart, because it is

always delineated manually for lung cancer RT as is it is considered organ at

risk that should receive the lowest possible radiation dose. The concordance of

volumes (3D shapes) resulting from both investigated segmentation methods

was quantified by the Dice similarity coefficient (DSC) [2].

After successful creation of pipelines for extraction of binary organ masks for a

heart, I was able to calculate a coefficient of similarity between manual and

automatic segmentation. Even though the raw values of this coefficient seem

to indicate that the automatic approach could be a viable replacement for

manual segmentation, examining the differences in shapes revealed that this

problem requires further investigation and consultation with specialists.

An important step in improving the applicability of my pipeline to a wider

range of imaging files is to extend its ability to deal with different DICOM tag

values and formats and thus being able to process more images. In the future,

I plan to analyze other immune-system-related structures, including bones,

which are a reservoir of bone marrow containing stem, as well as large blood

vessels, where mature blood cells are concentrated, similarly as in the heart.

Furthermore, I will continue to collect DICOM CT files from patients fulfilling

the inclusion criteria.

The ultimate goal of this line of investigation would be the analysis of a

similarity index for extracted radiomic features from manually and

automatically segmented ROIs related with immune system. The entirety of

over 1300 radiomic features (including those extracted from filtered images)

for each of CT and RTDOSE modalities would sufficiently cover the spectrum of

information that can be obtained from medical scans. Any potential

differences in their values could influence the quality of machine learning

models, which would be created for the purpose of outcome prediction.
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Currently, images collected from 11 patients have sufficient image metadata

and manual organ delineations to complete both pipelines. The average DSC

value for the included patients was equal to 0.835 (±0.027), indicating a

relatively high similarity between volumes across both approaches. However,

simply by looking at the raw value of DSC, it is not possible to determine which

approach is superior. In general, I observed that the understanding of how an

organ should be delineated varies between those two approaches. During a

manual segmentation, a heart is considered as the entire region, which

encompasses all of the heart's structures and sometimes even fragments of

blood vessels coming to/from the heart. On the other hand, automatic

algorithm performs segmentation of various heart structures (ventricles, atria,

myocardium) separately and treats a heart as a volumetric sum of these

structures.

Figure 1. Comparison of steps between automatic and manual pipelines for organ

segmentation into binary organ masks

Figure 2. Manual (green) and automatic (red) segmentation volumes of a heart
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